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The reaction of ortho-hydroxyaryloximes with p-toluenesulfonyl chloride in the presence of an amine
base efficiently generates the corresponding aryl-1,2-oxazole. Investigations revealed that solvent polar-
ity greatly affected the rate of the reaction with faster rates observed in more polar solvents. The reaction
proceeds to completion in only a few minutes in acetonitrile at room temperature, and the synthesis of
four novel aryl-1,2-oxazoles is presented.
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Aryl-1,2-oxazole-containing compounds have displayed some
promising biological activity1, and a number of useful synthetic
methods for the conversion of ortho-hydroxyaryloximes to the cor-
responding aryloxazoles have been employed.2 An elegant method
employing triphenylphosphine and DDQ was reported recently by
Iranpoor et al. to produce the desired heterocycles in high yields.3

As a supplement to these works, we describe here simple yet rapid
cyclization conditions for the efficient synthesis of novel aryl-1,2-
oxazoles.

During the course of an investigation into oxime reactivity, a
surprisingly mild and efficient synthesis of 1,2-aryloxazoles was
encountered. Starting from ortho-hydroxyaryloximes, reaction
with p-toluenesulfonyl chloride (TsCl) in organic solvents in the
presence of a tertiary amine base (iPr2NEt or Et3N) efficiently gen-
erated the corresponding aryloxazole. This appears to occur via a
cyclization reaction at the sp2 nitrogen of the oxime by the pheno-
lic oxygen (Scheme 1).

Initially we investigated the conversion using the simple sub-
strate 2-hydroxy-naphthalene-1-carbaldehyde oxime, 2 (Scheme
2). To this end, commercially available 2-hydroxy-1-naphthalde-
hyde 1 was converted to the desired ortho-hydroxyaryloxime 2
by heating in the presence of hydroxylamine hydrochloride. Cycli-
zation to naphtho[1,2-d]oxazole 3 proceeded quickly at room tem-
perature upon the addition of both the amine base and TsCl.

The cyclization reaction was easily monitored by a change in
absorbance since the long wavelength kmax of aryloxazole 3 was
greatly blue-shifted from the initial oxime 2 (Fig. 1). The reaction
proceeded cleanly through an isosbestic point indicating that the
initial tosylation reaction was the rate-limiting step in the 2-step
reaction scheme. Additional evidence for this was obtained upon
further analysis: the reaction rate was found to be dependent upon
the concentration of TsCl present and the reaction rate was re-
ll rights reserved.
tarded when weaker electrophiles (e.g., p-toluenesulfonyl fluoride
or diethylchlorophosphate) were employed.

Additional investigations revealed that the rate of naphthoxaz-
ole 3 formation was highly solvent dependent and the reaction
proceeded at a greater rate as the polarity of the solvent was in-
creased.4 The slowest rate was measured in THF while the fastest
rate was measured in acetonitrile (Table 1).

After completing these initial studies, the synthesis of addi-
tional aryloxazoles was attempted using the developed conditions.
The aryloxazole of pyridoxal, 6, was synthesized as shown in
Scheme 3. Commercially available pyridoxal hydrochloride 4 was
converted to the ortho-hydroxyloxime 5 with hydroxylamine
hydrochloride in ethanol at room temperature. As anticipated,
cyclization to the corresponding aryloxazole 6 occurred rapidly
in acetonitrile with TsCl and iPr2NEt. The reaction yielded the
desired aryloxazole quantitatively in only a few minutes.

To expand the reaction to a more general starting material, the goal
was to construct aryloxazoles from phenol compounds with a vacant
ortho site. Aromatic formylation of the open site followed by oxime
formation and cyclization produces the desired aryloxazole. Two no-
vel fluorescent analogues were subsequently constructed using this
methodology: coumarinoxazole 9 and pyreneoxazole 14.

Coumarinoxazole 9 was synthesized as shown in Scheme 4.
Compound 7,6 synthesized according to a literature procedure
from 7-hydroxycoumarin and employing a Duff reaction,7 was con-
verted to aryloxime 8 with hydroxylamine hydrochloride in EtOH.
Application of the cyclization reaction conditions produced the de-
sired 1,2-oxazole 9 in 90% yield in less than 5 min.

Pyreneoxazole 14 was synthesized as shown in Scheme 5. Com-
mercially available 1-hydroxypyrene was protected as the
methoxymethyl (MOM) ether with chloromethyl methyl ether
(MOMCl) in DMF. Ether 11 was selectively lithiated with n-butyl-
lithium using the ortho-directing MOM group8 and quenched with
DMF to install the formyl group and afford 1-methoxymethoxy-2-
pyrene carboxaldehyde 12. Conversion of the aldehyde to
aryloxime 13 was accomplished by heating in the presence of
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Scheme 1. Reaction of an ortho-hydroxyaryloxime with TsCl in the presence of an amine base generates the corresponding aryloxazole.
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Scheme 2. Synthesis of naphthoxazole 3.

Figure 1. Absorbance spectra for the naphthalene-based oxime 2 and oxazole 3.
Concentration = 3 � 10�5 M in CH2Cl2.

Table 1
Relative rates of naphthoxazole formation in organic solvents of varying polarities

Entry Solvent Relative rate ET(30)a

1 Tetrahydrofuran 1.0 37.4
2 Toluene 6.6 33.9
3 Dichloromethane 270 40.7
4 Benzonitrile 810 41.5
5 Acetonitrile 6300 45.6

a Empirical measure of solvent polarity derived from solvachromic betaine dyes.5
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hydroxylamine hydrochloride which also served to remove the
protecting group ether and afford 1-hydroxy-2-pyrenealdoxime.
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Scheme 5. Synthesis of
The developed reaction conditions again proved effective in gener-
ating the desired oxazole 14, although THF was employed as a sol-
vent in this case for solubility purposes and subsequently the
cyclization required additional reaction time (see Table 1).

In summary, four novel 1,2-aryloxazoles were synthesized
quickly and in high yields from ortho-hydroxyaryloximes via an
intramolecular cyclization upon reaction with p-toluenesulfonyl
chloride in the presence of an amine base. Initial tosylation of
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the oxime appeared to be the rate-determining step in the two-
step reaction scheme and the rate of the overall reaction was
highly dependent on the solvent polarity. Employing a highly polar
solvent (i.e., acetonitrile) increased the rate greater than 6000-fold
relative to the less polar THF. Employing the developed cyclization
to previously unsuitable substrates is currently underway. Addi-
tionally, the two-step reaction may find application in sensing
technology as we have recently demonstrated.9
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